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Abstract: The momentum autocorrelation function of a heavy particle in a finite one-dimensional crystal, POC"°(T), 
is compared with the same function in an infinite crystal, PO(CO)(T), by obtaining an explicit upper bound for the mag­
nitude of the difference, | PO(N\T) — po(co>(r)|. The precise meaning of the statement that po(ro)(r) is approximately a 
simple exponential is reviewed, and precise meaning is given to the statement that po(A,)0) decays exponentially. 

Over 50 years ago, Professor Debye recognized that 
density variations or fluctuations play an essential 

role in the interpretation of the thermal conductivity of 
crystalline solids.: His paper was one of the first on 
the properties of crystals containing defects. There is 
now an enormous and still-growing literature on the 
subject. 

The investigations of the time-dependent properties 
of a heavy particle substituted in a harmonic crystal 
have been extensive and numerous2-17 because of the 
relevance of this system to statistical mechanical theo­
ries of Brownian motion. In these investigations, the 
momentum autocorrelation function of the heavy 
Brownian particle has been evaluated only in the limit 
of an infinite crystal. In the present paper we obtain 
estimates of the same momentum autocorrelation func­
tion in the case of a finite one-dimensional crystal. 
This work was stimulated by a discussion with R. W. 
Zwanzig, and it is based on a method used recently by 
Rubin and Ullersma18 for estimating the momentum 
autocorrelation function of particles in a special finite 
harmonic oscillator system, the Bernoulli chain. 

The one-dimensional, nearest neighbor crystal model, 
which we consider, consists of 2N + 1 particles with 
periodic boundary conditions. The particles are la­
beled from -Af to N, and all particles except 0 have a 
mass m while particle 0 has the mass M > m. There 
are two equivalent expressions for the momentum auto­
correlation function of particle 0 in a finite crystal. 
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The first, which was obtained by Rubin,6 is 

PoW(0 = WfA = Q + l f #t0,rf expQwoQ 
2 « J L 1 + Qp*tt0,p] 

dp (1) 

where 

sio,p\ = ( 2 i v + i ) - 1 1 r. p2 + sin2 TTS 

IN + 1 

Q = (M — m)/m, w0 = 2(k/m)l/2 is the maximum fre­
quency of an infinite and perfect one-dimensional crystal, 
and k is the nearest neighbor force constant. The path 
of the line integral in eq 1 is a line parallel to the imagin­
ary p axis and to the right of all singularities of the 
integrand. The second expression for the momentum 
autocorrelation function is 3>19-21 

2iV+l 
Po(m(t) = E * o , 2 c o s ( w , 0 

V = I 

(2) 

where X0„ is the amplitude of particle 0 in the vth nor­
malized normal mode vector and w„ is the frequency of 
the fth normal mode. 

In estimating the value of po{N)(t) for a finite crystal, we 
will need the second of the foregoing representations. 
The explicit form for eq 2 is given in Hemmer's thesis.3 

Because the thesis is not readily available, we will 
derive the explicit form of eq 2 from eq 1 in the re­
mainder of this section, and then obtain estimates of eq 2 
for finite Nin section II. 

In the case of a finite crystal, the only singularities of 
the integrand in eq 1 are simple poles located on the 
imaginary p axis. Among these is a pole at p = 0, 
corresponding to zero frequency, free translation of the 
system. The remaining poles occur at zeros of the 
denominator 

D(iy) = l - Qy*S[0,iy], p = ty (3) 

The function f[0,/j] in eq 3 has been evaluated by Wallis 
and Maradudin.22 Its value is 

i[0,iy] = -y-\\ - J 2 ) - ' / ! cot [(27V + 1) sin-1 y] (4) 

Substituting eq 4 in eq 3, we obtain the following tran­
scendental equation for the zeros of the denominator 
D{iy) 

1 + Q tan (sin-1 y) cot [(2 N + 1) sin-1 y] = 0 (5) 
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In our model, when Q > 0, there is one zero of D(iy) 
located in each of the intervals 

sin 
ir(v - 1) 

IN + 1 
< yv < sin 

2/V + 1 

v = 1, N 

In addition, it is clear from the form of eq 5 that there is 
also a zero at — y\. The value of the integral in eq 1 is 
simply the sum of the residues of the integrand at each 
of the poles 

<A'VA = Po^(O 2 + l 

~iyJ[OJyJ exp(z>„a)o0 N 

E (dD(p)jdp)i> 

-iy^[0,-iyv] exp(-z>„«oO 
(dD(p)ldp)pm-iy, 

For the denominator in eq 6, we obtain 

(dD(p)/dp)\p = iyv = 2QiyJ[0,iy„] + 

2iQy,\2N + I ) " 1 E 
S=-N 

sin" - y» 2/V + 1, 

2QiyJ[0,iyv] + iQy.XdflpjyJIdy,) = 

»>»{2eJ-[0,J>J + 2(1 - y,2rvX2N + 1) X 

esc2 [(2JV + 1) sin-1 y] -

QyA(I - V ) - 3 / ! - y~Ki - V) - I / ! ] X 

cot [(2N + I)Sm-1 y]} (7) 

Equation 6, after insertion of eq 7, can be considerably 
simplified with the aid of the following identities. 

f[0,/>v] = (2.V,2)-1 

cot [(2N + 1) sin-1 y„] = - ( I - y.^'/Qy, 

esc2 [(2JV + 1) sin-1 y,] = [ (2 2 - I ) V + 1 ] /2 2 V 

The final form of the expression for the momentum 
autocorrelation function is 

P o W ( r ) = 
1 2 + 1 

2N + 1(1 + Q(2N + I)- + 

2 E 
(1 - V ) cos Oyr) 4 (8) 

" i ( 2 2 - I)J,2 + 1 + 2(2/v + l) 

where j , is the vtb. zero of 

QT1D(Iy,) = 2 - 1 + V l - J,2)-"''2 

cot [(2/V + 1) sin-1 yv] (8a) 

and where T = wrf. Equation 8 has the form of eq 2, 
a sum over the normal modes, and was obtained by 
Hemmer.3 Note that of the 2N + 1 distinct normal 
mode frequencies of the system, only N + 1 appear in 
eq 8. Montroll and Potts,23 in investigating the normal 
modes of vibration of such a single defect system, have 
noted that aside from the zero frequency mode, N of 
the normal mode eigenvectors are even with respect to 
the position of the defect particle and N are odd. 
Consequently, only the former appear explicitly in eq 8. 

(23) E. W. Montroll and R. B. Potts, Phys. Rev., 100, 525 (1955). 

It should also be noted that in the limit Q -> 0, 
i.e., M -*• m, the expression for P0

(N)(T) assumes the 
form obtained by Mazur and Montroll24 

Po(-v)(r) = (2N+ I ) - 1 J l + 2 E c o s (y,wr)\ (9) 

where V 0 ) = irv/(2N + 1) and v = 1, . . ., N are the 
roots obtained from eq 8a. It was noted4 in the N = 
co limit that there is some simplification in the form of 
Po(0=,(r) when Q = 1, i.e., M = 2m. When Q = 1 
and N is finite, eq 8 becomes 

P O W ( T ) = (N + I)- 1 + 2 E ( I - V ) cos (y„T)\ 

(10) 

Estimate of Time Dependence of P 0
( V ) (T) . The method 

(6) of estimating the time dependence of PO(N)(T) in eq 8 is 
straightforward and is identical with that used by Rubin 
and Ullersma18 in a related problem. In the limit in 
which N -*• oo, the sum in eq 8 can be replaced by an 
integral 

PoCro,(r) = (Q + 
J o 

[1 - J2(M)] COS [XM)I-] 

( 2 2 - I M M ) + 1 

where XM) = sin (ITJU/2), and so 

•1(1 _ JS)1Ac0S O ) 
Po(oo)(r) = (Q + 1)2 IT"1 f 

Jo (22 I)J2 + 1 

dM (H) 

dy (12) 

Equation 12 was obtained by Hemmer3 and is equivalent 
to the contour integral obtained by Rubin.24 Our 
problem now is to obtain an explicit estimate of the 
difference between P0

{N)(T) andpo^^r) . First note that 
the magnitude of the difference between PQ(N)(T) and the 
related sum in eq 13 satisfies the following inequality 

<») ( T ) _ 
Po" 

2 + l \ f ( l -
Â  A ^ i ( 2 2 

V ) cos ( ^ T ) < 2 + 1 
- I ) V + 1 27V + 1 

(13) 

where j„ is the root of eq 8a which lies between sin 
\-iy - 1)/(27V + I)] and sin [wv/(2N + 1)]. Next 
consider the magnitude of the difference between the 
integral P0

(CO)(T) in eq 11 and its approximating sum 
PO(T) based on the points 

y(v/n) = sin (wvj2N), v = 1, . . . , N 

The magnitude of the difference satisfies the inequality25 

W-\T) - p0(r)| ^ N-^V (14) 

where V, the variation of the integrand in (11), is 

By an identical argument, the magnitude of the dif­
ference between p0(r) and the sum in eq 13 satisfies the 
inequality 

Po(r) - fi±i E ° - ^ ) C 0 S ( ^ A ^ 
P V ' N , t i ( 2 2 - I ) V + I i 

(16) 
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The following upper bound can be obtained for the 
variation of the integrand in (11) 

v ^ (Q + I)(V2^g-1 + l) 

Consequently we obtain an explicit upper bound on the 
difference \PO["\T) - PO(A°(T)|. It is 

W"\T) - PO(N)(T)\ < 2W-1I) + 

( 2 + l)(2iV + 1)- ' ^ (1 + Q-I)TtN-I + 

(Q + l)[2N~i + (27V + I)-1] (17) 

It is known from earlier work4'6 that when Q » 1 and 
W = CO 

p°(")(r) ~ ( ( f+V-O e x p [ _ T ( e 2 -1^ £ 

{ 
2'Ag-i 0 £ T ^ 

A / O - I T - V S (2/^'Q-h-
T ^ TT " 

(18) 

Combining (17) and (18), we obtain finally 

WN)(T) - e x p ( - r ) | < 2 1 ^e- 1 X 

min{l,7r-'/°(2r)-^} +(wT+ l/a)QN- (19) 

where we have introduced the new time variable T = 
T/Q measured in units of the relaxation time of the 
exponential. In addition, terms of order A7-1 and Q-1 

have been neglected in comparison with unity. The 
estimate for the momentum autocorrelation function 
po(AO(j) j s USeful provided that the error bound on the 
right-hand side of eq 19 is small compared to the ex­
ponential on the left-hand side. We will now examine 
the nature of the error estimate in (19) in more detail. 
First we consider the special case N = <& and then the 
general case of finite ;¥. 

N = oo and Q » 1. In the limit N= <», it is readily 
verified that when T = a In Q, the ratio of the error 

bound to the exponential in eq 19 is 

(R = (2/7r)V2<2a-(6/!)(aln Q)-'/' (20) 

The ratio approaches zero for a < 6/2- For example, 
when a = 2 and Q = 104, the ratio (R ̂  1.01 X 10~4 

and T ^ 18.42. Thus in this example, after 18 relaxa­
tion times, the correction to the exponential is less than 
10 -4 of the value of the exponential. It is clear that as 
Q increases, the T interval in which the exponential is a 
good approximation to poic°\T) increases ~ a In Q and 
the error in the approximation approaches zero 
~ <2«-(sA> (In 0-3A wrlere a < 5/2. 

Finite N, N » Q » 1. We now consider the in­
equality (19) when JV » g » 1. For T = a In Q, 
the ratio of the error bound to the exponential in eq 19 is 

(R (2/7r)1/22"-(V!)(aln Q)~l/l + 

N-1Q1 +"(Train Q+ V2) (21) 

In the preceding case the term proportional to N-1 was 
absent. In the present case, if Q » 1 and N= Q1+a+fi, 
where 0 < /3 < (5/2) — a, then the second term on the 
right-hand side dominates the first 

£* Q-%wa In Q+ V2) (22) 

and the ratio (R approaches zero in the limit Q -*• <*>, 
N = g i+a+^ For example, when a = 1 , Q = 104, 
and / 3 = 1 , the ratio (R ^ 2.94 X 10~3 and T ^ 9.21. 
In this example the correction to the exponential is less 
than 3 X 1O-3 of the value of the exponential after nine 
relaxation times. It is clear that, as Q increases and 
with N= Q1+a+l3, the T interval in which the exponential 
is a good approximation to pQ

(N)(T) increases ~ a In Q 
and the error in the approximation approaches zero at 
least as fast at Q ~(a +fi) In Q, where a > 0 and /3 + a < 5/2. 

It is in the above sense that the momentum autocor­
relation function of a heavy particle in a finite crystal is a 
simple exponential. 
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